Longwave (LW) Spectral Response Characterization

Mohan Shankar

CERES Instrument Working Group

April 29, 2009

Total Channel Spectral Response

 Total Channel (0.3-200um) is a broadband measurement channel. Calibration lamps are used for SW and FTS is used for the LW.

 Ground Calibrations for LW used NFBB measurements at various temperatures-205K-312K.

• FM1 is considered in this analysis.

Filtered Radiance

Filtered Radiance

$$I_T^f = \int_{\lambda=0}^{\infty} S_{\lambda} I_{\lambda, T_{NFBB}} d\lambda$$

Spectral Response Radiance of Source Function

Ground Cal- Radiance vs. Counts

Assume flat spectral response

Ground Cal- Radiance vs. Counts

Assume flat spectral response

Production SRF

Radiance vs. Counts- Production SRF

Residual

Radiance-Counts Ratio-Production SRF

FTS Spectral Characterization

- BIORAD-60A Spectrometer is used as a broadband spectral source.
- Measurements taken by CERES instrument as well as a reference detector.
- Spectrally flat Lithium Tantalate Pyroelectric
 Reference Detector (PRD) is used as a reference.
- Spectral estimate is obtained by taking ratio of CERES sensor measurement with PRD measurement.

$$S_{\lambda} = \frac{m_{\lambda,CERES}^f}{m_{\lambda,PRD}^f}$$

FTS Wavelength Bands and Sources Used

NIR

2-4um

Source: Quartz Tungsten Halogen lamp

Beamsplitter: Quartz

MIR

- 2-20um

Source: Ceramic Glow bar

Beamsplitter: KBr

• FIR

- 10-50um

Source: Ceramic Glow bar

Beamsplitter: Mylar

VFIR

- 20-100um

Source: Ceramic Glow bar

Beamsplitter: Mylar

XFIR

- 40-100um

Source: Ceramic Glow bar

Beamsplitter: Mylar

Tying various spectral bands

- For each spectral band, an estimate of the spectral response function is obtained by taking the ratio of the sensor output to the PRD output.
- The overlap regions are used to tie adjacent spectral regions.
- Since the detector is broadband, the gain is assumed to be constant across all wavelengths.
- Tie the various spectral bands together while retaining the spectral features and keeping the gain constant.

First-cut Spectral Response

Radiance vs. Counts

Residual

Radiance-Counts Ratio

FTS System Setup

Figure 1. FTS Vacuum Spectral Characterization Facility Layout

Figure 2. Opto-Mechanical Layout of the BIO-RAD Model 60A Spectrometer